

CLASS XII GUESS PAPER MATHS

RELATION AND FUNCTION

Q. 1. Show that the relation R in the set A = $\{1, 2, 3, 4\}$ given by R= $\{(a, b) : | a - b | is even \}$, is an equivalence relation.

Q. 2. Show that the relation R in R defined by $R = \{ (a, b) : a \le b \}$, is reflexive and transitive but not symmetric.

Q. 3. Show that the relation R in the set A = { x : $x \in W$, $0 \le x \le 12$ given by R = { (a,b): | a-b | is a multiple of 4 } is an equivalence relation. Also find the set of all elements related to 2.

Q. 4. If f: R [®] R be given by $f(x) = (3 - x^3)^{\frac{1}{3}}$, find the value of fof (x)

cbse-

Q. 5. Consider $f : \mathbb{R}^{\otimes} \mathbb{R}$ given by f(x) = 4x+3, show that f is invertible. Find the inverse of f.

Q.6 Let A = { a,b,c} and B = { p,q,r} and f: A \rightarrow B is given by f = {(a,r),(b,q),(c,q)} Is f invertible? If so find f¹. Also verify f¹ o $f = I_A$ and fof⁻¹ = I_B where I_A and I_B are identity elements on set A and B respectively.

Q. 7. Show that binary operation a * b =(a + b)/2 " $a, b \in N$ is commutative but not associative.

Q. 8. Show that f: N
$$\rightarrow$$
 N defined by f (x) =
$$\begin{cases} \frac{n+1}{2} & ifn, odd \\ \frac{n}{2} & n, even \end{cases}$$
 many-one onto function.

Q. 9. Show that $f: R - \{0\} \rightarrow R - \{0\}$ given by f(x) = 3 / x is invertible and it is inverse of itself.

Q. 10. Show that the function f: $R \rightarrow R$ defined by f (x) = $3x^3 + 5$ for $x \in R$ is a bijection.

Q. 11. Show that the relation R on the set R of all real numbers, defined as $R = \{(a, b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

Q. 12. Show that the function $f:\mathbb{N}^{\otimes}$ Ngiven by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2 is onto but not one-one.

Let A = R - {3} and B = R - {1} If f: A \rightarrow B: f(x) = $\frac{x-2}{x-3}$, prove that f is a bijective function. Q.13

For real Numbers x and y we write x^*y if $x - y + \sqrt{2}$ is an irrational number. Prove that the relation * is not an Q.14 equivalence relation.

Let * be the binary operation on N defined by a* b = H.C.F. of a and b. Is * commutative , Associative ? Does Q.15 there exist identity for this operation?

Show that if f : R – {7/5} \rightarrow R – {3/5} is defined by f(x) = $\frac{3x+4}{5x-7}$ and g : R – {3/5} \rightarrow R - {7/5} is defined by g(x) = Q.16 $\frac{7x+4}{5x-3}$, then fog = I_A and gof = I_B, where A = R - {3/5}, B = R - {7/5}.

CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA | CBSE OTBA | Proficiency Test | 10 Years Question Bank | CBSE Guide | CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

Q.17 If L be the set of all lines in a plane and R be the relation in L defined as $R = \{(L1,L2): L1 \text{ is perpendicular to } L2\}$ then find whether the relation is equivalence or not.

Q18. If * be the binary operation on Z_0 such that $a^*b = a^2 - b^2 + ab + 4$, then find (2*3) * 4

Q19. Let * be the binary operation on Q+ such That a*b = ab/100, for all $a,b \in Q+$, Find the inverse of 0.1

Q.20 Consider a binary operation * on the set { 1,2,3,4,5} given by the following table . Find (i) (2*3)*4 and 2*(3*4)

(ii) (2*3)* (4*5) (iii) Is * commutative (iv) Find identity and inverse, if exist

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5